MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Cation Distribution Dependence on Thermoelectric Properties of Doped Spinel M0.6Fe2.4O4
Tomohiro NozakiKei HayashiYuzuru MiyazakiTsuyoshi Kajitani
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: M2012023

Details
Abstract
The electrical conductivity, Seebeck coefficient, and thermal conductivity of polycrystalline M0.6Fe2.4O4 (M = Ni, Ni0.5Mg0.5, Ni0.5Zn0.5, Zn) were measured to elucidate cation distribution-dependent changes. Preferential occupation by the doped cation in the iron spinel has been noted: Zn2+ ions prefer to occupy the tetrahedral A-site, while Ni2+ and Mg2+ prefer to occupy the octahedral B-site. While the electrical conductivity and Seebeck coefficient are almost cation distribution-independent, the thermal conductivity at room temperature is sensitive to the cation distributions. The lowest thermal conductivity of 2.0 W m−1 K−1 at room temperature is observed for Zn0.6Fe2.4O4. The value is about one third of that of Ni0.6Fe2.4O4. The thermal transport of MxFe3−xO4 is mainly affected by cation distribution at the A-site, while the electrical transport is affected by the B-site, which is discussed in terms of the point defects at the A- and B-sites. Due to the disordering at the A- and B-sites, the thermal conductivity of MxFe3−xO4 could be reduced without decreasing the electrical conductivity. Doped spinel-ferrite MxFe3−xO4 would be a kind of “phonon-glass electron-crystal” material.
Content from these authors
© 2012 The Japan Institute of Metals and Materials
feedback
Top