MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Delaying Effect of High-Density Electric Current on Fatigue Crack Growth in A6061-T6 Aluminum Alloy
Jaewoong JungYang JuYasuyuki MoritaYuhki TokuYoshihiko Uematsu
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: M2016240

Details
Abstract

This study examined the delaying effect of fatigue crack growth induced by high-density electric current on A6061-T6 aluminum alloy. To investigate the effect, fatigue tests were conducted using specimens with and without electric current treatment. The fatigue life of the treated specimens increased significantly compared with untreated specimens. After the tests, the fracture surfaces were examined using scanning electron microscope. In the specimens in which electric current was applied, local melting on the crack surface was observed via fractography. To clarify the effects of electric current treatment on fatigue crack propagation, early crack growth was investigated using the plastic replication method. A delaying effect was particularly noticeable in the small-crack region. Results show that this delaying effect can be attributed to crack shielding caused by local melting on the crack surface, which signifies that the fatigue life is improved by the application of high-density electric current.

Content from these authors
© 2016 The Japan Institute of Metals and Materials
feedback
Top