MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Prediction of Deformation Behavior of Metallic Foams Using a Yield Criterion for Compressible Materials
Woo-Young KimRyo MatsumotoHiroshi Utsunomiya
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: M2018215

Details
Abstract

Deformation behavior of metallic foams is complicated due to changes in bulk density and volume during deformation. In the previous studies, repeated compression tests were conducted with cylindrical specimens of open-cell type nickel foam and closed-cell type aluminum foam to investigate changes in density and dimensional change. In this study, Oyane’s yield criterion which was originally developed for powder sintered materials and the associated flow rule were used to describe the deformation behavior of the metallic foams with consideration of changes in density, i.e., volumetric strain. The material constants in Oyane’s equation were determined for the two metallic foams based on the experimental results. The obtained constants were a = 2.12 and m = 0.3 for the both foams. Deformation behavior in uniaxial compression is successfully reproduced with the obtained material constants.

Fig. 5 Prediction and experimental results of changes in diameter and bulk density for (a) Celmet and (b) ALPORAS. Fullsize Image
Content from these authors
© 2018 The Japan Institute of Metals and Materials
feedback
Top