MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Effect of Extrinsic Grain Boundary Dislocations on Mechanical Properties of Ultrafine-Grained Metals by Molecular Dynamics Simulations
Tomotsugu ShimokawaTomoyuki HiramotoToshiyasu KinariSukenori Shintaku
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: MD200810

Details
Abstract
The effect of extrinsic grain boundary dislocations (EGBDs) in nonequilibrium grain boundaries on the mechanical properties of ultrafine-grained metals is investigated by molecular dynamics simulations. Aluminum bicrystal models containing cracks and EGBDs impinged from the crack tips are prepared. First, the dependence of the local grain boundary structure on the accommodation mechanism of EGBDs, and on its stress field is studied. Then, the shielding effect of EGBDs on the emissions of dislocations from crack tips is investigated, and the effect of nonequilibrium grain boundaries on the intragranular deformation is discussed. Finally, to investigate the relationship between EGBDs and intergranular deformations, shear loading is applied to the bicrystal models. It is found that extrinsic grain boundaries function as the intergranular deformation source, and the Burgers vector components of the EGBDs lead to anisotropic grain boundary sliding.
Content from these authors
© 2009 The Japan Institute of Metals and Materials
feedback
Top