MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Grain Boundary Sliding in a Superplastic Zinc-Aluminum Alloy Processed Using Severe Plastic Deformation
Megumi KawasakiTerence G. Langdon
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: ME200720

Details
Abstract
A Zn-22% Al eutectoid alloy was processed by Equal-Channel Angular Processing (ECAP) to produce a grain size of ∼0.8 μm. Tensile testing at 473 K gave a maximum elongation of ∼2230% at a strain rate of 1.0×10−2 s−1. The significance of grain boundary sliding was evaluated by taking measurements of offsets in surface marker lines at an elongation of 30%. The highest sliding contribution was recorded under testing conditions corresponding to the maximum superplastic elongation. Detailed measurements showed that relatively large offsets occurred at the Zn-Zn and Zn-Al interfaces but there were smaller offsets at the Al-Al interfaces. It is concluded that grain boundary sliding is the dominant flow process during superplastic deformation.
Content from these authors
© 2008 The Japan Institute of Metals and Materials
feedback
Top