Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745
Recent Advances in Materials and Processing 2022
Development of neural network potential for Al-based alloys containing vacancy
Jia ZHAOYutaro MAEDAKenjiro SUGIOGen SASAKI
Author information
JOURNAL OPEN ACCESS

2023 Volume 10 Issue 4 Pages 23-00066

Details
Abstract

Potential energy of an alloy is an essential indicator for evaluating the stability of the structure in predicting new materials. Therefore, how to calculate the potential energy in material design has become an inevitable problem. While first-principles calculations can provide chemical accuracy for arbitrary atomic arrangements, they are prohibitive in terms of computational effort and time. To enable atomistic-level simulations of both the processing and performance of Aluminum alloys, neural network potential was proposed to predict the binding energy of vacancy-containing aluminum alloys in a highly accurate state. This method combined first-principles calculations and machine learning techniques to explore the intrinsic link between solid solution structure and binding energies. In this study, four binary alloys (aluminum-silicon, aluminum- zirconium, aluminum-magnesium and aluminum-titanium alloys) were investigated. The mean squared errors were used to quantify the quality of the neural network potential models and it was found that the trained model is more stable and exhibits high accuracy for energy prediction. The Monte Carlo simulation results show that using this neural network potential successfully simulated aging process of aluminum alloys, and the neural network potential can be much faster than first-principles calculations, even with high accuracy.

Content from these authors
© 2023 The Japan Society of Mechanical Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top