Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745
Recent Advances in Materials and Processing 2022
Electroelastic analysis for a sheared D piezoelectric cylinder disturbed by transient temperature distribution
Masayuki ISHIHARAYuto NAKADAYoshitaka KAMEO
Author information
JOURNAL OPEN ACCESS

2023 Volume 10 Issue 4 Pages 23-00096

Details
Abstract

For safe and sound utilization of the applications made of polylactic acid that output an electric signal to an intended mechanical input within an undesirable thermal environment, the transient thermoelectroelastic field is investigated for an infinite cylinder with D symmetry subjected to shear stress as an intended mechanical input and temperature as an unfavorable thermal environment. By use of the analytical technique constructed previously, the field quantities are represented in terms of the elastic, piezoelastic, and thermoelastic displacement potential functions and the electric potential function, and the governing equations for these functions are presented. Then, the analytical solutions of the transient and non-axisymmetric field quantities are obtained using the Fourier and Laplace transformations with respect to the axial coordinate and time variable, respectively, and the Fourier expansion with respect to the circumferential coordinate. Subsequently, numerical calculations are performed to investigate the field due to the shear stress or temperature. As a result, the structures of respective fields are elucidated and the effect of thermal disturbance on the output signal to mechanical input is investigated quantitatively, both of which illustrate the significance of transient and three-dimensional analysis.

Content from these authors
© 2023 The Japan Society of Mechanical Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top