Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745
Dynamics & Control, Robotics & Mechatronics
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate
Takayoshi NARITATakeshi KURIHARAHideaki KATO
Author information
JOURNAL FREE ACCESS

2016 Volume 3 Issue 6 Pages 15-00376

Details
Abstract

Nowadays, thin steel plates with high surface quality are required. However, the quality of steel plates is adversely affected by transport using the friction force generated by contact with rollers in the manufacturing process. As a solution to this problem, the non-contact transport of steel plates using an electromagnetic force has been proposed. When a steel plate has sufficient stiffness owing to its material or size, it can be levitated by a levitation system consisting of actuators installed in the vertical direction. On the other hand, it is difficult for very thin steel plates to levitate because of the deflection at locations where an attractive force is not applied. To improve the levitation performance of the conventional magnetic levitation system, we have proposed the addition of an electromagnet to control the horizontal displacement of the steel plate. However, there have been no detailed examinations of by how much the levitation stability of a steel plate is improved by the suppression of deflection. In this study, we obtained the shape of a levitated steel plate by electromagnetic field analysis and deformation analysis and evaluated the obtained shape of the steel plate. Furthermore, a levitation experiment was performed to verify the levitation stability of this system. The results show that the addition of an electromagnet in the horizontal direction is effective for achieving stable levitation.

Content from these authors
© 2016 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top