Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745
Thermal, Engine and Power Engineering
Estimation of maximum Bio-coke compressive strength based on chemical composition
Author information

2021 Volume 8 Issue 1 Pages 20-00391


Effective utilization of biomass, including wood, is necessary for environmental sustainability. Bio-coke is a solid biofuel made from plant biomass. Bio-coke has been proposed as an alternative energy source to coal due to its high density and compressive strength. Bio-coke is produced by subjecting wood biomass to the hot press method, and the softening properties of hemicellulose and lignin in the raw biomass affect the formation, physical and mechanical characteristics of Bio-coke. In prior studies, we investigated the effect of raw material biomass composition and moisture content on flow-starting temperature, and compressive strength of the resulting Bio-coke. The purpose of the present study was to quantitatively determine the effect of biomass composition changes on flow-starting temperature and compressive strength on using cellulose-rich cedar trunk and lignin-rich cedar bark as raw materials. Due to the difficulty collecting a single form of biomass, the study of mixed raw biomasses is more relevant when evaluating practical applications of produced from these materials. The present study revealed that as lignin ratio increased, flow-starting temperature and Bio-coke compressive strength decreased. Furthermore, we developed a potential equation for estimating the maximum compressive strength of Bio-coke from the raw biomass chemical composition ratio and moisture content.

Content from these authors
© 2021 The Japan Society of Mechanical Engineers
Previous article Next article