医用画像情報学会雑誌
Online ISSN : 1880-4977
Print ISSN : 0910-1543
ISSN-L : 0910-1543
研究速報
深層学習を用いた超音波画像における乳児股関節状態の自動分類に関する予備的検討
李 鎔範大澤 由瑛長谷川 晃皆川 靖子弦巻 正樹伊賀 敏朗
著者情報
ジャーナル フリー

2017 年 34 巻 2 号 p. 92-95

詳細
抄録

The purpose of this study is to investigate an effectiveness of a method for automatic classification of infant hip types on ultrasonography. A convolutional neural network(CNN)was adopted for the automated classification of hip types corresponding to the Graf method that was defacto standard method for ultrasonographic assessment of infant hip dysplasia. In the CNN, AlexNet was employed as neural network model. We collected 49 ultrasound images that were classified based on the Graf method by an ultrasonographer. Data augmentation by rotating, mirroring, adjusting contrast, etc., generated additional 246,960 images from the original 49 ones. The augmented images were used as training data of the CNN. The accuracy by 10-fold cross validation was 73%. The CNN would be potentially effective for automatic classification of infant hip types.

著者関連情報
© 2017 医用画像情報学会
前の記事 次の記事
feedback
Top