医用画像情報学会雑誌
Online ISSN : 1880-4977
Print ISSN : 0910-1543
ISSN-L : 0910-1543
原著論文
畳み込みニューラルネットワークを用いた指骨CR画像からの骨粗しょう症の識別
畠野 和裕村上 誠一植村 知規陸 慧敏金 亨燮青木 隆敏
著者情報
ジャーナル フリー

2019 年 36 巻 2 号 p. 72-76

詳細
抄録

Osteoporosis is known as one of the main diseases of bone. Although image diagnosis for osteoporosis is effective, there are concerns about increased burden of radiologists associated with diagnostic imaging, uneven diagnostic results due to experience difference, and undetected lesions. Therefore, in this study, we propose a diagnosis supporting method for classifying osteoporosis from phalanges computed radiography images and presenting classification results to physicians. In the proposed method, we construct classifiers using convolution neural network and classify normal cases and abnormal cases about osteoporosis. In our experiments, two kinds of CNN models were constructed using input images generated from 101 cases of CR images and evaluated using Area Under the Curve(AUC)value on Receiver Operating Characteristics(ROC)curve. Finaly, AUC of 0.995 was obtained.

著者関連情報
© 2019 医用画像情報学会
前の記事 次の記事
feedback
Top