医用画像情報学会雑誌
Online ISSN : 1880-4977
Print ISSN : 0910-1543
ISSN-L : 0910-1543
原著論文
3D-CNN による経時的差分像上の結節状陰影検出
芳野 由利子陸 慧敏金 亨燮村上 誠一青木 隆敏木戸 尚治
著者情報
ジャーナル フリー

2019 年 36 巻 2 号 p. 77-82

詳細
抄録

A temporal subtraction image is obtained by subtracting a previous image, which are warped to match between the structures of the previous image and one of a current image, from the current image. The temporal subtraction technique removes normal structures and enhances interval changes such as new lesions and changes of existing abnormalities from a medical image. However, many artifacts remain on a temporal subtraction image and these can be detected as false positives on the subtraction images. In this paper, we propose a 3D-CNN after initial nodule candidates are detected using temporal subtraction technique. To compare the proposed 3D-CNN, we used 7 model architectures, which are 3D ShallowNet, 3D-AlexNet, 3D-VGG11, 3D-VGG13, 3D-ResNet8, 3D-ResNet20, 3D-ResNet32, with these performance on 28 thoracic MDCT cases including 28 small-sized lung nodules. The higher performance is showed on 3D-AlexNet.

著者関連情報
© 2019 医用画像情報学会
前の記事 次の記事
feedback
Top