Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

2版
Diffusion MR Imaging with T2-based Water Suppression (T2wsup-dMRI)
Tokunori KimuraKousuke YamashitaKouta Fukatsu
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: mp.2021-0007

この記事には本公開記事があります。
2版: 2021/08/03
1版: 2021/07/22
詳細
抄録

Purpose: This study proposes and assesses a new diffusion MRI (dMRI) technique to solve problems related to the quantification of parameter maps (apparent diffusion coefficient [ADC] or mean diffusivity [MD], fractional anisotropy [FA]) and misdrawing of fiber tractography (FT) due to cerebrospinal fluid (CSF)-partial volume effects (PVEs) for brain tissues by combining with the T2-based water suppression (T2wsup) technique.

Methods: T2wsup–diffusion-weighted imaging (DWI) images were obtained by subtracting those images from the acquired multi-b value (b) DWI images after correcting the signal intensities of multiecho time (TE) images using long TE water signal-dominant images. Quantitative parameter maps and FT were obtained from minimum data points and were compared with those using the standard (without wsup) DWI method, and partly compared with those obtained using other alternative DWI methods of applying fluid attenuation inversion recovery (FLAIR), non-b-zero (NBZ) by theoretical or noise-added simulation and MR images.

Results: In the T2wsup-dMRI method, the hyperintense artifacts due to CSF-PVEs in MRI data were dramatically suppressed even at lower b (≲ 500 s/mm2) while keeping the tissue SNR. The quantitative parameter map values became precisely close to the pure tissue values precisely even in water (CSF) PVE voxels in healthy brain tissues (T2 ≲ 100 ms). Furthermore, the fiber tracts were correctly connected, particularly at the fornix in closest contact to the CSF.

Conclusion: Solving the problem of CSF-PVE in the current dMRI technique using our proposed T2wsup-dMRI technique is easy, with higher SNR than those obtained with FLAIR or NBZ methods when applying to healthy brain tissues. The proposed T2wsup–dMRI could be useful in clinical settings, although further optimization of the pulse sequence and processing techniques and clinical assessments are required, particularly for long T2 lesions.

著者関連情報
© 2021 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top