Neurologia medico-chirurgica
Online ISSN : 1349-8029
Print ISSN : 0470-8105
ISSN-L : 0470-8105

This article has now been updated. Please use the final version.

Stem Cell Transplantation Enhances Endogenous Brain Repair after Experimental Stroke
Nobutaka HORIETakeshi HIUIzumi NAGATA
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: ra.2014-0271

Details
Abstract

Stem cell transplantation for stroke treatment has been a promising therapy in small and large animal models, and many clinical trials are ongoing to establish this strategy in a clinical setting. However, the mechanism underlying functional recovery after stem cell transplantation has not been fully established and there is still a need to determine the ideal subset of stem cells for such therapy. We herein reviewed the recent evidences showing the underlying mechanism of functional recovery after cell transplantation, focusing on endogenous brain repair. First, angiogenesis/neovascularization is promoted by trophic factors including vascular endothelial growth factor secreted from stem cells, and stem cells migrated to the lesion along with the vessels. Second, axonal sprouting, dendritic branching, and synaptogenesis were enhanced altogether in the both ipsilateral and contralateral hemisphere remapping the pyramidal tract across the board. Finally, endogenous neurogenesis was also enhanced although little is known how much these neurogenesis contribute to the functional recovery. Taken together, it is clear that stem cell transplantation provides functional recovery via endogenous repair enhancement from multiple ways. This is important to maximize the effect of stem cell therapy after stroke, although it is still undetermined which repair mechanism is mostly contributed.

Content from these authors
© 2015 by The Japan Neurosurgical Society

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top