Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Special Section on Recent Progress in Nonlinear Theory and Its Applications
Learning a simple multilayer perceptron with PSO
Riku TakatoKenya Jin'no
著者情報
ジャーナル オープンアクセス

2023 年 14 巻 2 号 p. 500-507

詳細
抄録

In this study, we attempt to learn the parameters of a multilayer perceptron (MLP) using the particle swarm optimization (PSO) method, which is an approximate solution method for optimization problems without requiring the derivative information of the evaluation function. We used the gradient method and PSO to learn to classify a linearly inseparable dataset with an MLP in the middle layer with a few neurons. We experimentally confirmed that PSO outperformed gradient-based learning.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top