Laser diodes (LDs) have been applied to a phase-measuring interferometer through the wavelength tunability of LDs by controlling their currents. Laser-diode interferometers based on a heterodyne technique are reviewed. A two-wavelength laser-diode interferometer is demonstrated with current control of dual LDs in opposite directions. A synthetic wavelength makes it possible to extend the range of interferometric measurements. The wavelength is controlled by the laser injection current and is stepwise or rampwise changed to introduce a time-varying phase difference between the two beams of an interferometer with unbalanced optical path lengths. The optical output is demodulated with a phase-extraction algorithm. Systematic phase errors caused by the LD-power variation and by the difference between the beat frequency and ramp frequency are analyzed. A feedback interferometer with electronics is used to eliminate the phase error by locking the interferometer on a preset phase. Typical experimental results are shown.
References (0)
Related articles (0)
Figures (0)
Content from these authors
Supplementary material (0)
Result List ()
Cited by
This article cannot obtain the latest cited-by information.