横幹連合コンファレンス予稿集
第8回横幹連合コンファレンス
セッションID: B-1
会議情報

B-1 ミクロとマクロをつなぐ社会的知能・合理性
社会学習エージェント系におけるナッシュ均衡とダイナミクス
*中山 一昭守 真太郎
著者情報
会議録・要旨集 オープンアクセス

詳細
抄録
We study a model for social-learning agents in a restless multiarmed bandit (rMAB). The rMAB has one good arm that changes to a bad one with a certain probability. Each agent seeks the good arm by random search with probability 1-r, or copying information from other agents (social learning) with probability r. Each agent’s fitness is the probability to know the good arm. In this model, we explicitly construct the unique Nash equilibrium state and show that the corresponding strategy for each agent is an evolutionarily stable strategy (ESS) in the sense of Thomas. The ESS Nash equilibrium is a solution to Rogers ’paradox. We also consider the space of mixed strategies and introduce a natural dynamics aiming at increasing each agent’s fitness. It is shown that the dynamics converges to the ESS Nash equilibrium.
著者関連情報
© 2017 (NPO)横断型基幹科学技術研究団体連合(横幹連合)
前の記事 次の記事
feedback
Top