横幹連合コンファレンス予稿集
第15回横幹連合コンファレンス
セッションID: C-3
会議情報

C-3 OS02:テキストマイニングおよび質的研究法
テキスト分析における生成AIの活用
*黒木 弘司木野 泰伸
著者情報
会議録・要旨集 オープンアクセス

詳細
抄録
The rapid advancement of generative AI in recent years has been remarkable. It has been found that, despite certain limitations and challenges, generative AI can interpret co-occurrence network diagrams, a task traditionally requiring a considerable level of expertise in text analysis. This paper takes the analysis a step further by investigating the extent to which generative AI can propose solutions based on the features identified through the interpretation of co-occurrence network diagrams. A comparative evaluation is conducted between the proposals generated by AI and those made by human experts, aiming to assess the potential of AI in contributing to problem-solving within text analysis.
著者関連情報
© 2024 (NPO)横断型基幹科学技術研究団体連合(横幹連合)
前の記事 次の記事
feedback
Top