Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Reviews
Millisecond Ca2+ dynamics activate multiple protein cascades for synaptic vesicle control
Sumiko MOCHIDA
著者情報
ジャーナル フリー HTML

2017 年 93 巻 10 号 p. 802-820

詳細
抄録

For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.

著者関連情報
© 2017 The Japan Academy
前の記事 次の記事
feedback
Top