人工知能学会全国大会論文集
Online ISSN : 2758-7347
第33回 (2019)
セッションID: 2Q3-J-2-05
会議情報

畳み込みニューラルネットワークの学習過程の可視化
*坂井 創一竹中 要一
著者情報
会議録・要旨集 フリー

詳細
抄録

Convolutional Neural Network(CNN)は、ディープニューラルネットワークを用いた画像分類器である.しかし,CNNは分類したクラスに対する判断根拠を提示することができないという欠点をもつ.この問題を解決するため,判断根拠となる画像の一部を提示する可視化手法が提案されている. 分類に対する判断根拠の可視化と同様に,学習過程の視覚化も重要だと考えている. CNNのクラス判別性能はパラメータの影響が大きい事が知られている.そのため,学習過程の視覚化が可能となる事によりパラメータ調整を効率的に行うことができる. そこで我々は学習過程を視覚化する方法を提案する.提案手法はCNNの学習過程におけるエポック毎に,任意のクラスの分類判断根拠画像を生成する. 提案手法の有効性を検証するため,MNISTデータセットを用いた。その結果、提案手法が,従来手法では不可能であった任意のクラスに対する学習過程を視覚化できることを示した.

著者関連情報
© 2019 一般社団法人 人工知能学会
前の記事 次の記事
feedback
Top