人工知能学会全国大会論文集
Online ISSN : 2758-7347
第33回 (2019)
セッションID: 4Rin1-35
会議情報

グローバル株式市場における深層学習を用いたマルチファクター運用の実証分析
*阿部 真也中川 慧
著者情報
会議録・要旨集 フリー

詳細
抄録

時系列予測の観点から株価を予測するために深層学習を用いる研究が多数行われてきた。 一方で、クロスセクション予測(マルチファクターモデル)の観点から、深層学習を用いて株価を予測する研究は少なく、特に世界の株式市場における有効性を実証する研究は存在しない。 そこで本稿では、グローバルな株式市場においてクロスセクション予測の観点から深層学習を用いたマルチファクターモデルに基づく相対的な魅力度の有効性を検証する。 分析の結果、次の結論が得られた。 1.深層学習による株価予測モデルはランダムフォレストやリッジ回帰に比べリターン/リスクの面で優れている。2.特に低リスクという観点で、深層学習モデルは優れている。3.市場の効率性が低下すると、収益機会が増える可能性がある。

著者関連情報
© 2019 一般社団法人 人工知能学会
前の記事 次の記事
feedback
Top