主催: The Japanese Society for Artificial Intelligence
会議名: 2021年度人工知能学会全国大会(第35回)
回次: 35
開催地: オンライン
開催日: 2021/06/08 - 2021/06/11
In this paper, we explored factors that tend to increase the number of enterovirus infections. We use government open data and data-mining techniques such as linear regression, random forest, support vector machine, and gradient boosting implemented by the XGBoost package to predict the enterovirus epidemic in Taipei and Taoyuan next week. The R-squared (also known as the coefficient of determination) of the best performing predictive model is about 0.9, showing that we can effectively predict the enterovirus epidemic through machine learning models.