主催: The Japanese Society for Artificial Intelligence
会議名: 2021年度人工知能学会全国大会(第35回)
回次: 35
開催地: オンライン
開催日: 2021/06/08 - 2021/06/11
In the field of automated negotiation, there has been a growing interest in models that can explain the rational decisions of automated negotiating agents in order to gain the trust of users. Those models enable humans to trust agents by understanding their behavioral principles. In specific, in automated negotiation, appropriate compromises need to be made during the negotiation to match the other negotiating party in order to reach an agreement that is mutually beneficial. However, the negotiating agents currently use simple negotiation models. In this paper, we propose an automated negotiation model based on Q-learning. This enables the negotiating agent to make appropriate compromises to match the other negotiating party, which results in greater mutual benefit. The experimental evaluations show that the proposed agent is faster and has better results than the existing agents.