人工知能学会全国大会論文集
Online ISSN : 2758-7347
36th (2022)
セッションID: 2S4-IS-2b-02
会議情報

Proposal for Turning Point Detection Method using Financial Text and Transformer
*Rei TAGUCHIHikaru WATANABEHiroki SAKAJIKiyoshi IZUMIKenji HIRAMATSU
著者情報
会議録・要旨集 フリー

詳細
抄録

In this study, we demonstrate whether analysts' sentiment toward individual stocks is useful for stock market analysis. This can be achieved by creating a polarity index in analyst reports using natural language processing. In this study, we calculated anomaly scores for the created polarity index using anomaly detection algorithms. The results show that the proposed method is effective in detecting the turning point of the polarity index.

著者関連情報
© 2022 The Japanese Society for Artificial Intelligence
前の記事 次の記事
feedback
Top