主催: The Japanese Society for Artificial Intelligence
会議名: 2023年度人工知能学会全国大会(第37回)
回次: 37
開催地: 熊本城ホール+オンライン
開催日: 2023/06/06 - 2023/06/09
Multi-agent simulations are useful in social sciences but they encounter an evaluation difficulty in that many social phenomena are qualitative, and it is difficult to evaluate quantitatively the realness of simulations. Therefore, we propose a new quantitative evaluation method for multi-agent simulation in social sciences using a generative adversarial network (GAN). In our proposed method, GAN's critic was used as a simulation evaluator. We implemented a GAN and a multi-agent simulation for financial markets in experiments to test the proposed method. Results showed that our proposed method achieved promising results as an alternative to the traditional qualitative evaluation; it enabled successful quantitative evaluation with good correspondence with the traditional qualitative evaluation. The realization of quantitative evaluation using GAN as an alternative to the traditional qualitative evaluation may expand the usage of multi-agent simulation.