主催: The Japanese Society for Artificial Intelligence
会議名: 2024年度人工知能学会全国大会(第38回)
回次: 38
開催地: アクトシティ浜松+オンライン
開催日: 2024/05/28 - 2024/05/31
Arrhythmia refers to an abnormal rhythm of heartbeat; heart may beat too fast, too slow, or with an irregular rhythm. In medicine, the electrocardiogram (ECG) is prevalently used for detecting and classifying arrhythmias. In this paper, we present an approach based on the combination of Convolutional Neural Networks (CNNs), Bidirectional Long Short-Term Memory (BiLSTM) networks and Attention Mechanism for the classification of heartbeats, which can accurately classify five different types of arrhythmias. We evaluated the proposed method on the PhysioNet MIT-BIH dataset. According to the results, our method was evaluated using 10-fold cross-validation, achieving the accuracy of 95.17% in arrhythmia classification.