Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580
Identification of two tobacco genes encoding MYB3R proteins with repressor function and showing cell cycle-regulated transcript accumulation
Hirotomo TakatsukaYuji NomotoSatoshi ArakiYasunori MachidaMasaki Ito
ジャーナル フリー

2021 年 38 巻 2 号 p. 269-275


MYB3R family transcription factors play a central role in the regulation of G2/M-specific gene transcription in Arabidopsis thaliana. Among the members of this family, MYB3R3 and MYB3R5 are structurally closely related and are involved in the transcriptional repression of target genes in both proliferating and quiescent cells. This type of MYB3R repressor is widespread in plants; however, apart from the studies on MYB3Rs in Arabidopsis thaliana, little information about them is available. Here we isolated tobacco cDNA clones encoding two closely related MYB3R proteins designated as NtmybC1 and NtmybC2 and determined the nucleotide sequences of the entire coding regions. Phylogenetic analysis suggested that NtmybC1 and NtmybC2 can be grouped into a conserved subfamily of plant MYB3Rs that also contains MYB3R3 and MYB3R5. When transiently expressed in protoplasts prepared from tobacco BY-2 cells, NtmybC1 and NtmybC2 repressed the activity of target promoters and blocked promoter activation mediated by NtmybA2, a MYB3R activator from tobacco. Unlike MYB3R3 and MYB3R5, NtmybC1 and NtmybC2 showed cell cycle-regulated transcript accumulation. In synchronized cultures of BY-2 cells, mRNAs for both NtmybC1 and NtmybC2 were preferentially expressed during the G2 and M phases, coinciding with the expression of NtmybA2 and G2/M-specific target genes. These results not only broadly confirm our fundamental view that this type of MYB3R protein acts as transcriptional repressor of G2/M-specific genes but also suggest a possible divergence of MYB3R repressors in terms of the mechanisms of their action and regulation.

© 2021 Japanese Society for Plant Biotechnology
前の記事 次の記事