Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Peculiar properties of tuber starch in a potato mutant lacking the α-glucan water dikinase 1 gene GWD1 created by targeted mutagenesis using the CRISPR/dMac3-Cas9 system
Mariko OhnumaKosuke ItoKarin HamadaAmi TakeuchiKenji AsanoTakahiro NodaAkira WatanabeAkiko HokuraHiroshi TeramuraFuminori TakahashiHiromi Mutsuro-AokiKoji TamuraHiroaki Shimada
著者情報
ジャーナル オープンアクセス 早期公開
電子付録

論文ID: 23.0823a

この記事には本公開記事があります。
詳細
抄録

Glucose chains in starch are phosphorylated and contribute to structural stabilization. Phosphate groups contained in starch also play a role in retaining moisture. α-Glucan water dikinase 1 (GWD1) is involved in the phosphorylation of glucose chains in starch. In this study, we generated potato mutants of the GWD1 gene using the CRISPR/dMac3-Cas9 system. Observation of the phenotypes of the GWD1-deficient mutants revealed their physiological roles in tuber starch formation. The 4-allele mutants showed growth retardation and a delay in tuber formation. A significant decrease in phosphorus content was detected in the tuber starch of the gwd1 mutant. This mutant starch showed a higher amylose content than the wild-type starch, whereas its gelatinization temperature was slightly lower than that of the WT starch. The peak viscosity of the mutant starch was lower than that of the WT starch. These observations revealed that the starch of the gwd1 mutants had peculiar and unique properties compared to those of WT, sbe3 and gbss1 mutant starches. The amount of tissue-released water due to freeze–thawing treatment was determined on tubers of the gwd1 mutant and compared with those of WT and the other mutants. Significantly less water loss was found in the gwd1, sbe3 and gbss1 mutant tubers than in the WT tubers. Our results indicate that the GWD1 gene is not only important for potato growth, but also largely effective for the traits of tuber starch.

Fullsize Image
著者関連情報
© 2023 Japanese Society for Plant Biotechnology

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
feedback
Top