PSYCHOLOGIA
Online ISSN : 1347-5916
Print ISSN : 0033-2852
ISSN-L : 0033-2852

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

QUANTIFYING THE AESTHETIC FOR STREETSCAPES: APPLICATION OF DEEP LEARNING TO ASHIHARA’S AESTHETIC TOWNSCAPE
Yuji YOSHIMURATetsuya TAKAHASHIMami AOTA
著者情報
ジャーナル フリー 早期公開

論文ID: 2021-B022

この記事には本公開記事があります。
詳細
抄録

This paper discusses the concepts of aesthetic and nonaesthetic in streetscapes. The nonaesthetic refers to physical elements and spatial compositions that make the aesthetic emerge differently depending on the observer who sees them. Using Ashihara’s (1979) methodology for evaluating aesthetic townscapes and Sibley’s (1959) concept of aesthetic properties, this paper proposes a quantification of the nonaesthetic of streetscapes, focusing on streets in Ginza, Tokyo, and examining the spatial clustering of their nonaesthetic. For this, we used deep learning to quantify the distribution of physical elements and their spatial composition and a spatial clustering analysis to uncover hidden patterns in the streetscapes. These methodologies enabled us to assess streets across neighborhoods and districts and produce a comparative microscale analysis that covers a wider area. Thus, our study combines the fields of aesthetics, architecture, urban planning, and community design.

著者関連情報
© 2019 Psychologia Society
feedback
Top