日本レオロジー学会誌
Online ISSN : 2186-4586
Print ISSN : 0387-1533
ISSN-L : 0387-1533
論文
Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions
Daisuke TatsumiSatoshi IshiokaTakayoshi Matsumoto
著者情報
ジャーナル フリー

2002 年 30 巻 1 号 p. 27-32

詳細
抄録
The steady flow and the dynamic viscoelastic properties of cellulose fiber suspensions were investigated as functions of the suspension concentration and the fiber shape using a parallel-plate type rheometer. Various concentrations of the suspensions were made from various types of cellulose fibers, i.e., microcrystalline cellulose, bacterial cellulose, and fibrillated cellulose fibers. All the suspensions showed non-Newtonian flow even at very low concentrations. The flow property of each suspension showed a plateau of the shear stress, i.e., the yield stress, over a critical concentration. The critical concentration obtained from the experiment agreed well with the value theoretically calculated from the axial ratio of the fibers. The dynamic moduli of the suspensions were almost independent of the angular frequency, and they increased with the fiber concentration. The dynamic storage moduli increased in proportion to the 9/4th power of the fiber concentration. This power of 9/4 is coincident with that theoretically required for polymer gels. This fact suggests that the rigidity of the suspensions has appeared by the same mechanism from the order of cellulose fibers to microcrystalline cellulose fibers, and even to polymer molecules.
著者関連情報
© 2002 The Society of Rheology, Japan
前の記事 次の記事
feedback
Top