河川技術論文集
Online ISSN : 2436-6714
ランダム・フォレストを用いた融雪期のダム流入量予測における入力データの検討
山田 嵩阿部 真己滝口 大樹谷瀬 敦矢部 浩規
著者情報
ジャーナル フリー

2020 年 26 巻 p. 89-94

詳細
抄録

In predicting the inflow of dams during the snowmelt season by deep learning, it's important to select input data. In this study, we visualized the importance of input data using the random forest method. The input data includes precipitation, global solar radiation, reflected solar radiation, upward radiation, downward radiation, surface temperature, temperature, wind speed, humidity, snow weight, snow depth and snowmelt amount.

As a result, the most important factors were the temporal distribution of precipitation, upward radiation, air temperature, surface temperature, and snow depth.

著者関連情報
© 2020 土木学会
前の記事 次の記事
feedback
Top