日本リモートセンシング学会誌
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
時系列センサフュージョン画像を用いた最新分類手法精度比較
山形 与志樹小熊 宏之
著者情報
ジャーナル フリー

2001 年 21 巻 4 号 p. 322-329

詳細
抄録
Gaussian process was developed from bayesian neural networks with the infinite number of nodes in the hidden layer. It is also an bayesian model averaging approach which integrate the model prediction with the posterior probability of the parameters. In this paper, the basic theory of gaussian process for classifying satellite remote sensing data is introduced and experimented using the multi-temporal LANDSAT TM, JERS1 and ERS1 SAR data. The accuracies of the classifications have been compared with the maximum likelihood method and bayesian neural network method. The result shows that the gaussian process outperforms the other methods for classifying the LANDSAT/TM, JERS-1/SAR, and ERS-1/AMldata, and especially performs well for the sensor fusion data.
著者関連情報
© 社団法人 日本リモートセンシング学会
次の記事
feedback
Top