計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
入力依存ノイズを考慮した応答曲面法に基づく多目的最適化
有泉 亮テッシュ マシューチョセット ハウィー松野 文俊
著者情報
ジャーナル フリー

2014 年 50 巻 11 号 p. 792-800

詳細
抄録
In many engineering problems including control problems, optimization of the policy for multiple conflicting criteria is required. However this is very challenging if there exist noise, which may be input dependent, and/or the restriction in the number of evaluations, which is induced in the case where the experiments are expensive in time and/or money. This paper presents a multiobjective optimization (MOO) algorithm for expensive-to-evaluate noisy functions. By incorporating a heteroscedastic Gaussian process regression method as well as standard Gaussian process regression, the algorithm creates suitable surrogate functions from noisy samples and finds the point to be observed at the next step. This algorithm is compared against an existing MOO algorithm, and then applied to optimize the sidewinding gait of a snake robot.
著者関連情報
© 2014 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top