計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
非同期セルオートマトンによるリザバーコンピューティング
浦上 大輔郡司 ペギオ幸夫
著者情報
ジャーナル フリー

2020 年 56 巻 1 号 p. 8-15

詳細
抄録

The asynchronously tuned cellular automaton (AT_ECA) we proposed has been shown to generate critical spatiotemporal patterns without fine-tuning of order parameters. In this study, we propose a learning system that applies the remarkable characteristics of AT_ECA to reservoir computing, which has recently been attracting attention as a learning model for time series data. Then, the learning ability of the proposed system was evaluated by the learning task called five-bit task. As a result, it became clear that the success rate of learning is relatively high even if distractor in time series data to learn is long.

著者関連情報
© 2020 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top