計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
モデル縮約のためのモジュール構造をもつ深層ニューラルネットワークの提案
高野 靖也川口 貴弘朝見 聡佐々木 理沙子杉元 聖和進矢 義之足立 修一
著者情報
ジャーナル フリー

2023 年 59 巻 8 号 p. 353-361

詳細
抄録

This paper proposes a deep neural network with module architecture for model reduction, and a cost function suitable for training the model. In the proposed model architecture, each layer is modularized for reducing the model by adjusting the number of layer. This feature allows the computational load of the model to be quickly switched. In order to maintain the accuracy of the reduced model even if it is not retrained, the cost function is defined as a weighted average of the errors of the model output over the number of layers. The effectiveness of the proposed method is validated through numerical examples for small tasks. Our implementation is available at https://github.com/sy-takano/modularized_dnn_for_model_reduction.

著者関連情報
© 2023 公益社団法人 計測自動制御学会
次の記事
feedback
Top