計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
高次モーメントを用いた機会制約の近似による非線形確率モデル予測制御
深尾 真輝大塚 敏之
著者情報
ジャーナル フリー

2024 年 60 巻 3 号 p. 151-159

詳細
抄録

This paper proposes non-conservative nonlinear stochastic model predictive control (SMPC) subject to time-invariant uncertainties in initial conditions and system parameters. SMPC imposes probabilistic constraints on the probability of satisfying constraints (chance constraints), which enable us to explicitly consider the trade-off between guaranteeing the constraint satisfaction and minimizing the cost function. This paper proposes a method to obtain non-conservative control inputs by deriving a probability inequality using higher-order moments for reformulating chance constraints. To estimate these moments, the proposed method adopts generalized polynomial chaos expansion. By applying the proposed method to a semibatch reactor system, we show that the generalized polynomial chaos expansion can estimate higher-order moments with fewer samples than the Monte Carlo method and that the proposed method performs better than SMPC using a probability inequality with only mean and variance.

著者関連情報
© 2024 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top