計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
再帰型ニューラルネットワークの安定性判別のための圧縮モデルの構築と入出力特性の評価
湯野 剛史福地 和真蛯原 義雄
著者情報
ジャーナル 認証あり

2025 年 61 巻 3 号 p. 104-114

詳細
抄録

This paper proposes a model compression method of reducing the number of nonlinear activation functions of continuous-time recurrent neural networks (RNNs). Ensuring the internal stability of the compressed RNN guarantees that of the original RNN. An error bound between the outputs of the compressed RNN and the original one is derived. Moreover, an optimization problem for reducing the bound is formulated, and it is relaxed to a semi-definite programming problem. Furthermore, it is shown that the proposed model compression method produces a compressed RNN whose output is close to that of the original one as a general tendency. The proposed method is demonstrated on a simple numerical example.

著者関連情報
© 2025 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top