計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
部分分数展開の逐次計算法
都丸 隆夫
著者情報
ジャーナル フリー

1974 年 10 巻 3 号 p. 321-326

詳細
抄録
In this paper a unified recursive algorithm is realized to determine the partial fraction expansion coefficients of of the most general form of rational functions without any kind of distinction.
(1) Fundamental recurrence formulae are derived for the expansion of the product of two kinds of multiple poles, and for the Laurent series expansion of numerator polynomials.
(2) Coefficients a (l, i) of the Laurent series expansion of denominator 1/Q(z), and b(l, i) of the numerator polynomial P(z) are given by the iterative use of these recursive formulate.
(3) The product of the coefficients a (l, i) and b(l, i) constitutes the partial fraction expansion coefficients c(l, i) and c0(l) of P(z)/Q(z).
The algorithm is suitable both for machine calculation and for figures.
The application of the algorithm to computer programs is discussed.
The accuracy of the calculated values of coefficients clarifies the effectiveness of the algorithm.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top