計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
パラメータ同定問題における不動点の存在
亀島 鉱二
著者情報
ジャーナル フリー

1983 年 19 巻 12 号 p. 937-942

詳細
抄録
This paper presents some results obtained through analysis of a parameter identification problem for linear stochastic systems in the framework of functional analysis. A procedure is formulated for the identification of unknown parameters where a class of adaptation mechanisms is used to improve the filter dynamics so that the filtering residual provides an innovation process, i.e., a Brownian motion process independent of observation. The adaptation mechanisms are assumed to be modelled mathematically as a class of dynamical systems driven by the filtering residuals so as to provide a mapping from the function space made up of parameter estimation processes into itself. Sufficient conditions are obtained for the mapping to have a fixed point. The uniqueness of the fixed point is also proved to clarify the conditions for the parameter estimate, which is computed as the fixed point of a locally convergent adaptation mechanism, provides the unknown parameter asymptotically.
著者関連情報
© 社団法人 計測自動制御学会
次の記事
feedback
Top