Abstract
In this paper, we first derive a dynamical model of a rotary crane whose boom angle is controlled by a hydraulic cylinder. On the basis of the dynamical model, we propose an open-loop plus feedback control scheme. The crane makes three kinds of motion (rotation, load hoisting, and boom hoisting) simultaneously. The goal is to transfer a load to a desired place in such a way that at the end of transfer the swing of the load decays as quickly as possible. We first apply an open-loop control input to the system such that the state of the system can be transferred to a neighborhood of the equilibrium state. Then we apply a feedback control signal so that the state of the system approaches the equilibrium state as quickly as possible. The results of computer simulation prove that the open-loop plus feedback control scheme works well.