計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
ニューラルネットワークによる位置ずれ・スケール・線分の太さに不変なパターン認識機構
福見 稔大松 繁西川 〓一
著者情報
ジャーナル フリー

1994 年 30 巻 11 号 p. 1360-1367

詳細
抄録
In this paper, an architecture for pattern recognition system using neural networks is presented which is insensitive to translation, scale and line thickness. The system consists of a preprocessing network and a trainable multilayered network. An input pattern is first normalized in position and size through a pattern standardizing network. A feature extraction network is next used to detect line features which are an activity pattern in the OSC (Orientation Specificity Cell) layer. The line features are also used as an input pattern to the multilayered network which is then trained to recognize the pattern. Computer simulations of a numeral recognition task show the effectiveness of the system.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top