計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
S-モデル非定常環境中で動作する可変階層構造学習オートマトン
最上 義夫馬場 則夫杉浦 公彦
著者情報
ジャーナル フリー

1995 年 31 巻 4 号 p. 513-520

詳細
抄録
The purpose of this paper is to construct a new learning algorithm for variable hierarchical structure learning automata operating in a nonstationary random environment by extending the relative reward strength algorithm proposed by Simha and Kurose. The learning property of our algorithm is considered theoretically, and it is proved that the optimal path probability can be approached to 1 as close as possible by using our algorithm. In numerical simulation, the number of iterations of our algorithm is compared with that of the variable hierarchical structure learning algorithm of LR-I type proposed by Mogami and Baba, and it is shown that our algorithm can find the optimal path after the smaller number of iterations than that of the algorithm of LR-I type.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top