計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
遺伝アルゴリズムによる巡回セールスマン問題の一解法
前川 景示玉置 久喜多 一西川 〓一
著者情報
ジャーナル フリー

1995 年 31 巻 5 号 p. 598-605

詳細
抄録
The genetic algorithm (GA) is an optimization technique simulating the process of natural evolution, and it has been successfully applied to several optimization problems which are difficult to solve exactly by conventional methods. This paper proposes a new method for solving the traveling salesman problem (TSP) based on the GA. In applications of GA to TSP proposed so far, a coding where the chromosome represents a list of cities arrayed in the visiting order has been mainly used. However, in such a coding, we have to devise a crossover operator that keeps each chromosome to be a permutation, and it inevitably causes a difficulty in inheritance of tour characteristics.
The present paper proposes a new method in which a genetic coding represents edges of the tour, and a crossover operator exchanges the edges of the parent tours. The effectiveness of the proposed method is confirmed through several computational experiments, including a comparison with another typical method. Furthermore, the paper proposes an algorithm which combines GA with the 2-opt method, a local search technique. The effectiveness of this algorithm is also confirmed through a comparison with other methods for solving the TSP.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top