Abstract
Feedback control has been used to stabilize the steady-state output power of a CO2 laser to overcome the problems caused by the change in the temperature/deterioration of CO2 gas. The transient response, however, is as slow as a few hundred milliseconds because of the slow dynamics of a thermopile power sensor. When machining conditions of a CO2 laser are changed, this rather slow response requires an extra dwell time, resulting in low productivity of the machining.
To cope with this problem, the authors have developed adaptive feedforward control for a CO2 laser in addition to conventional feedback control. The model of a CO2 laser is described as a gain, which is varied by the setting parameters; laser power, pulse frequency and duty factor, as well as gas conditions. In this paper, two new variables, effective discharge power and threshold discharge power, are introduced to obtain a compact and adjustable model. With the proposed control system, the step response time of a laser power is reduced to less than ten milliseconds without overshoot, and can be set to desired constant time. The effects of such a fast and stable response on the machining speed and machining quality are examined. The experimental results show that for thin metal line-cutting, neither the melt-off area nor dross is observed even in the no-dwell time case. For thin metal hole-cutting, the machining speed is improved by 30%.