SOLA
Online ISSN : 1349-6476
ISSN-L : 1349-6476
Article
Impacts of Midlatitude Western North Pacific Sea Surface Temperature Anomaly on the Subseasonal to Seasonal Tropical Cyclone Activity: Case Study of the 2018 Boreal Summer
Tomoe NasunoMasuo NakanoHiroyuki MurakamiKazuyoshi KikuchiYohei Yamada
著者情報
ジャーナル オープンアクセス
電子付録

2022 年 18 巻 p. 88-95

詳細
抄録

In this study, we explored the impacts of midlatitude western North Pacific (WNP) sea surface temperature (SST) on tropical cyclone (TC) activity at intraseasonal to seasonal time scales during the 2018 boreal summer. During this period, a positive SST anomaly occurred in the midlatitude WNP and subtropical central Pacific; TC activity was abnormally high under the influence of the strong Asian summer monsoon. We performed sensitivity experiments using a global cloud system-resolving model for global SST (control, CTL) and SST that were regionally restored according to midlatitude WNP climatology (MWNPCLM). TC track density in the eastern WNP was higher in CTL than in MWNPCLM, in association with large-scale atmospheric responses; enhanced monsoon westerlies in the subtropical WNP, moist rising (dry subsiding) tendencies, and reduced (enhanced) vertical wind shear in the eastern (western) WNP. Enhanced TC activity in the eastern WNP was more distinct for intense TCs and during the active phase of intraseasonal oscillation (ISO). These results suggest that the impacts of midlatitude SST anomalies can reach lower latitudes to affect TC activity via large-scale atmospheric responses and ISO, which are usually overwhelmed by the impacts of SST anomalies in the tropics and subtropics.

著者関連情報
© The Author(s) 2022. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top