SOLA
Online ISSN : 1349-6476
ISSN-L : 1349-6476
Article
Zero-Shot Super-Resolution from Unstructured Data Using a Transformer-Based Neural Operator for Urban Micrometeorology
Yuki YasudaRyo Onishi
著者情報
ジャーナル オープンアクセス
電子付録

2025 年 21 巻 p. 355-361

詳細
抄録

This study demonstrates that a transformer-based neural operator (TNO) can perform zero-shot super-resolution of two-dimensional temperature fields near the ground in urban areas. During training, super-resolution is performed from a horizontal resolution of 100 m to 20 m, while during testing, it is performed from 100 m to a finer resolution of 5 m. This setting is referred to as zero-shot, since no data with the target 5 m resolution are included in the training dataset. The 20 m and 5 m resolution data were independently obtained by dynamically downscaling the 100 m data using a physics-based micrometeorology model that resolves buildings. Compared to a convolutional neural network, the TNO more accurately reproduces temperature distributions at 5 m resolution and reduces test errors by approximately 33%. Furthermore, the TNO successfully performs zero-shot super-resolution even when trained with unstructured data, in which grid points are randomly arranged. These results suggest that the TNO recognizes building shapes independently of grid point locations and adaptively infers the temperature fields induced by buildings.

著者関連情報
© The Author(s) 2025. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top