粉体工学会誌
Online ISSN : 1883-7239
Print ISSN : 0386-6157
ISSN-L : 0386-6157
論文
多出力ガウス過程回帰によるベイズ最適化を用いた粉体製造における
粒子径分布の適応的実験計画
北村 智浩今井 貴史河本 薫
著者情報
ジャーナル 認証あり

2025 年 62 巻 11 号 p. 628-639

詳細
抄録

This paper proposes a Bayesian optimization–based method for optimizing operating parameters in powder processing to achieve desired particle size distributions with a few experimental trials. Such optimization has become increasingly important in recent years due to the trend toward strict quality requirements. A difficulty in applying Bayesian optimization to this task is that the objective variables (i.e., the particle size distributions) are probability distributions, which are required to satisfy the normalization condition. We overcome this difficulty by predicting percentiles using multi-output Gaussian process surrogate models. Experiments on actual equipment showed that the proposed method can provide sufficiently optimized parameter values without either expert knowledge or detailed process modeling. In addition, this paper examines the potential of grey-box modeling for overcoming the limitations of our machine learning approach in extrapolation.

著者関連情報
© 2025 一般社団法人粉体工学会
前の記事 次の記事
feedback
Top