Spine Surgery and Related Research
Online ISSN : 2432-261X
ISSN-L : 2432-261X
Quantitative Biomechanical Evaluation for Optimal Spinal Instrumentation to Prevent Mechanical Complications in Spinal Fusion from the Lower Thoracic Spine to the Pelvis for Adult Spinal Deformity: A Finite Element Analysis
Takuhei KozakiShunji TsutsuiEi YamamotoAkimasa MurataRyuichiro NakanishiHiroshi Yamada
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 2022-0131

Details
Abstract

Introduction

Mechanical complications, such as rod fracture (RF) and proximal junctional kyphosis (PJK), commonly occur after adult spinal deformity (ASD) surgery. A rigid construct is preferred to prevent RF, whereas it is a risk factor for PJK. This controversial issue urged us to conduct a biomechanical study for seeking the optimal construct to prevent mechanical complications.

Materials and Methods

A three-dimensional nonlinear finite element model, which consisted of the lower thoracic and lumbar spine, pelvis, and femur, was created. The model was instrumented with pedicle screws (PSs), S2-alar-iliac screws, lumbar interbody fusion cages, and rods. Rod stress was measured when a forward-bending load was applied at the top of the construct to evaluate the risk of RF in constructs with or without accessory rods (ARs). In addition, fracture analysis around the uppermost instrumented vertebra (UIV) was performed to assess the risk of PJK.

Results

Changing the rod material from titanium alloy (Ti) to cobalt chrome (CoCr) decreased shearing stress at L5-S1 by 11.5%, and adding ARs decreased it by up to 34.3% (for the shortest ARs). Although the trajectory (straightforward vs. anatomical) of PSs did not affect the fracture load for UIV + 1, changing the anchor from PSs to hooks at the UIV reduced it by 14.8%. Changing the rod material from Ti to CoCr did not alter the load, whereas the load decreased by up to 25.1% as the AR became longer.

Conclusions

The PSs at the UIV in the lower thoracic spine, CoCr rods as primary rods, and shorter ARs should be used in long fusion for ASD to prevent mechanical complications.

Content from these authors
© 2023 The Japanese Society for Spine Surgery and Related Research.

SSRR is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Anyone may download, reuse, copy, reprint, or distribute articles published in the journal for not-for-profit purposes if they cite the original authors and source properly. If you remix, transform, or build upon the material, you may not distribute the modified material.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top