構造工学論文集 A
Online ISSN : 1881-820X
コンクリート構造・橋:論文
転移学習によるオートエンコーダモデルを用いたコンクリート構造物の異常検知手法
Ruben Vargas池野 勝哉内藤 英樹木本 智幸
著者情報
ジャーナル フリー

2025 年 71A 巻 p. 592-602

詳細
抄録

Abnormality detection in aged reinforced concrete structures using local vibration measurements is investigated. In addition to the conventional local vibration method focused on the localized resonant frequency, three machine-learning-based models are evaluated: (a) a dedicated model, (b) a generalist model, and (c) a novel approach that enhances the capabilities of the generalist model using transfer learning. Experimental results on a damaged pre-stressed slab indicate that machine-learning methods may effectively evaluate structures under various damage patterns and complex boundary conditions. The findings affirm the potential of the transfer learning approach for effective abnormality detection in concrete structures, particularly where detailed initial data is unavailable.

著者関連情報
© 2025 公益社団法人 土木学会
前の記事 次の記事
feedback
Top