Transactions of the Atomic Energy Society of Japan
Online ISSN : 2186-2931
Print ISSN : 1347-2879
ISSN-L : 1347-2879
Article
Hydrogen Production by High-Temperature Gas-Cooled Reactor; Conceptual Design of Advanced Process Heat Exchangers of the HTTR-IS Hydrogen Production System
Nariaki SAKABAHirofumi OHASHIHiroyuki SATOTeruo HARARyoma KATOKazuhiko KUNITOMI
Author information
JOURNAL FREE ACCESS

2008 Volume 7 Issue 3 Pages 242-256

Details
Abstract
  Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process. The heat of 10 MWth at approximately 900°C, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced.
Content from these authors
© 2008 Atomic Energy Society of Japan
Previous article Next article
feedback
Top